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Abstract—Network calculus is a powerful methodology of

characterizing queueing processes and has wide applications. In
this paper, we focus on the fundamental problem of ”under what
condition can we derive stable backlog bounds using the current
state of art of stochastic network calculus”. We model an network
element (called a ”node” here) as a single server with impairment
service based on two best-known models in stochastic network
calculus (one is first proposed by Cruz and the other is first
proposed by Yaron and Sidi). We find that they actually derive
equivalent stochastic service curves and backlog bounds. And we
prove that stable backlog bounds can be derived by stochastic
network calculus as long as the average rate of traffic arrival is
less than that of service. This work suggests the effectiveness of
stochastic network calculus in theory.

I. Introduction

Network calculus provides an elegant way to characterize

traffic and service processes of network and communication

systems. Unlike traditional queueing theory in which one has

to make strong assumptions on arrival or service processes

(e.g., Poission arrival process, exponential service distribution,

etc) so as to derive closed-form solutions in queueing networks

[1], network calculus allows general arrival and service pro-

cesses. Instead of getting exact solutions, one derives network

backlog and delay bounds by network calculus. Deterministic

network calculus is mature in theory [2] [3] [6] [7]. How-

ever, most traffic and service processes are stochastic and

deterministic network calculus is often not applicable to them.

Therefore, stochastic network calculus was proposed to deal

with stochastic arrival and service processes [7]- [20].

In this paper, we focus on the fundamental problem of

”under what condition can we derive stable backlog bounds

using the current state of art of stochastic network calculus”.

By stable backlog bounds, we mean that the mean backlog

amount calculated by the backlog bounds is a finite number

(see Definition 8).

We model an network element (called a ”node” here) as

an ideal server with an impairment process based on the two

best-known models in stochastic network calculus: model A

(adopted by [12] [18] and etc) and model B (adopted by [11]

[19] and etc). And we make the following contributions:

1This research was supported by National Natural Science Foundation
of China (Project No. 61100112), Beijing Planning Office of Philosophy
and Social Science (Project No. 12JGA014) and the Discipline Construction
Foundation of Central University of Finance and Economics.

• We compare model A and B and prove that they actually

derive equivalent stochastic service curves and backlog

bounds.

• We prove that stable backlog bounds can be derived by

stochastic network calculus as long as the average rate of

traffic arrival is less than that of service.

Note that when we prove a statement for ourselves, we call

it Propositions to differentiate the existing Theorems in the

literature (see Proposition 1-4).

This paper is organized as follows. In Section II, we give

a brief overview of stochastic network calculus. In particular,

we present the classic models (namely model A and B), and

we also discuss the martingale and independent case analysis

techniques. In Section III, we present the two network calculus

models. We compare the two models and find that they are

equivalent in derivation stochastic service curves and backlog

bounds. We also prove the stability condition by the theory

of stochastic network calculus in this section. In Section V,

we give related works and highlight our contributions. Finally,

Section VI concludes the paper.

II. Review of Stochastic Network Calculus

In this section, we first review basic terms of network

calculus and then cite some results of the stochastic network

calculus theory used in our paper. Jiang classified stochastic

arrival curves as the types of ta (traffic amount centric),

vb (virtual backlog centric) and mb (max virtual backlog

centric), and classified stochastic service curve as ws (weak

stochastic) and sc (stochastic). In this paper, we adopt ta and

vb arrival curves as well as the ws service curve, as currently

they provides tightest backlog bounds2. Note that we just say

”stochastic service curve” in our paper which means the ws

one.

A. Basic Terms of Network Calculus

We consider a discrete time system where time is slotted

(t = 0, 1, 2, ...). A process is a function of time t. By default,

we use A(t) to denote the arrival process to a network element

with A(0) = 0. A(t) is the total amount of traffic arrived to

2As recently known by the network calculus community the bounding
probability of a mb arrival curve is either 0 or 1 [22]. The usage of the
sc service curve is also restrictive as it is often derived from an impairment
process with the mb arrival curve.
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this network element up to time t. We use A∗(t) to denote the

departure process of the network element with A∗(0) = 0.

A∗(t) is the total amount of traffic departed from the network

element up to time t. Let F (F̄ ) represents the set of non-

negative wide-sense increasing (decreasing) functions. Clearly,

A(t) ∈ F and A∗(t) ∈ F . For any process, say A(t), we

define A(s, t) ≡ A(t)−A(s), for s ≤ t. We define the backlog

of the network element at time t by

B(t) = A(t) − A∗(t), (1)

and the delay of the network element at t by

D(t) = inf{d : A(t) ≤ A∗(t + d)}. (2)

Fig. 1 illustrates an example of A(t) and A∗(t) with B(t) and

D(t) at t = 10.
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Fig. 1. Illustration of A(t), A∗(t), B(t) and D(t)

In deterministic network calculus, A(t) can be upper-

bounded by an arrival curve. That is, for all 0 ≤ s ≤ t, we

have

A(s, t) ≤ α(t − s),

where α(t) is called the arrival curve of A(t).
We say, busy period is a time period during which the

backlog in the network element is always nonzero. For any

busy period (t0, t], suppose we have

A∗(t) − A∗(t0) ≥ β(t − t0),

if the network element provides a guaranteed service lower-

bounded by β(t − t0) during the busy period. We can let t0
be the beginning of the busy period, that is, the backlog at t0
is zero or A∗(t0) = A(t0). Therefore,

A∗(t) − A(t0) ≥ β(t − t0).

The above equation infers A∗(t) ≥
inf0≤s≤t [A(s) + β(t − s)], which can be written as

A∗(t) ≥ A ⊗ β(t), (3)

where ⊗ is called the operator of min-plus convolution and

β(t) is called the service curve of the network element.

B. Stochastic Network Calculus on Bounding Traffic

We consider a server S (i.e. the network element) fed

with a flow A. In practice, A’s traffic and S’s service are

often stochastic, which can not be hard bounded by some

curves. That is, they can violate the curves but with certain

probabilities (we call it bounding function here). The theory

of stochastic network calculus can get probabilistic bounds for

backlogs and delays of the server, suppose we can characterize

A by a stochastic arrival curve and S by a stochastic service

curve.

In this section, we just consider the derivation of backlog

bounds as delay bounds are quite similar to the former. We

first give some definitions. Then we cite some results of model

A and B. Finally, we make a brief discussion on them.

1) Definitions:

Definition 1 (ta stochastic arrival curve): A flow is said to

have a ta (traffic-amount-centric) stochastic arrival curve α ∈
F with bounding function f ∈ F̄ , denoted by A ∼ta< f, α >,

if for all s, t ≥ 0(s ≤ t) and all x ≥ 0, there holds

P{A(s, t) − α(t − s) > x} ≤ f(x). (4)

Definition 2 (vb stochastic arrival curve): A flow is said

to have a vb (virtual-backlog-centric) stochastic arrival curve

α ∈ F with bounding function f ∈ F̄ , denoted by A ∼vb<
f, α >, if for all t ≥ 0 and all x ≥ 0, there holds

P{ sup
0≤s≤t

[A(s, t) − α(t − s)] > x} ≤ f(x). (5)

We can see that A ∼vb< f, α > implies A ∼ta< f, α >, since

P{A(s, t)−α(t−s) > x} ≤ P{sup0≤s≤t[A(s, t)−α(t−s)] >
x}.

Definition 3 (Stochastic Service Curve): A server S is said

to provide a (weak) stochastic service curve β ∈ F with

bounding function g ∈ F̄ , denoted by S ∼ws< g, β > (or

just S ∼< g, β >), if for all t ≥ 0 and all x ≥ 0, there holds

P{A ⊗ β(t) − A∗(t) > x} ≤ g(x). (6)

Definition 4 (Leftover Service): Consider a server S pro-

vides the ideal service curve β̂(t) with the impairment process

I to a flow. Then, during any backlogged period (s, t], the

output flow A∗(s, t) from the server satisfies

A∗(s, t) ≥ β̂(t − s) − I(s, t). (7)

β̂(t) − I(t) is the leftover service received by the given flow.

The definition of leftover service (also called stochastic

strict server in [18]) can be applied to many scenarios such

as cross traffic and wireless channels.

Definition 5 (θ-MER): A process A’s minimum envelope

rate with respect to θ (θ-MER), denoted by ρ∗(θ), is defined

as follows:

ρ∗(θ) = lim
t→∞

1

θt
sup
s≥0

log EeθA(s,s+t). (8)

We say that A has an envelope rate with respect to θ (θ-ER),

denoted by ρ(θ), if ρ(θ) ≥ ρ∗(θ).
Definition 6 ((σ(θ), ρ(θ))-upper constrained): A process

A is said to be (σ(θ), ρ(θ))-upper constrained for some θ > 0,

if for all 0 ≤ s ≤ t, we have

1

θ
log EeθA(s,t) ≤ ρ(θ)(t − s) + σ(θ). (9)

We can derive stochastic arrival and service curves from the

(σ(θ), ρ(θ))-upper constrained characterization (Section II-C.
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Definition 7 (Average Rate): The average rate of a process

A, denoted by aA, is defined as

aA = lim
t→∞

sup
s≥0

EA(s, s + t)

t
. (10)

Definition 8 (Stable Backlog Bound): The backlog B(t) is

stable, if for all t,

EB(t) < ∞, (11)

We say that the backlog bounds are stable if they can derive

stable backlogs.

2) Model A’s Backlog Bounds: Model A deals with vb

arrival curves and stochastic service curves. We have the

following theorems for leftover service curves and backlog

bounds.

Theorem 1 (Model A’s Leftover Stochastic Service Curve):

Suppose a server S providing the ideal service curve β̂(t)
with the impairment process I . If I has a vb stochastic arrival

curve, i.e., I ∼vb< g, γ >, then the server provides the flow

the leftover stochastic service curve S ∼< g, β > and

β(t) = β̂(t) − γ(t). (12)

Theorem 2 (Model A’s Backlog Bounds): If the flow A
has a vb stochastic arrival curve A ∼vb< f, α > and the

server S provides a stochastic service curve S ∼< g, β > to

the flow, then the backlog B(t) of the flow in the server at

time t satisfies:

P{B(t) > x + sup
s≥0

[α(s) − β(s)]} ≤ f ⊗ g(x), (13)

for all t ≥ 0 and all x ≥ 0.

3) Model B’s Backlog Bounds: Model B deals with ta

arrival curves and stochastic service curves.

In fact, we can derive vb arrival curves from ta arrival curves

by introducing the function δ(t) = δ · t (δ is an adjustable

constant). The following Lemma 1 states this [14].

Lemma 1 (ta to vb Arrival Curves): Suppose A is a ta

stochastic arrival curve, A ∼ta< f, α >, then A ∼vb< f̃, αδ>

with αδ(t) ≡ α(t) + δt and its bounding function f̃(x, δ) =∑∞

k=0 f(x + kδ) (suppose the sum is finite).

The derivations are as follows.

P{ sup
0≤s≤t

[A(s, t) − αδ(t − s)] > x}

≤

t∑

s=0

P{A(s, t) − αδ(t − s) > x}

=

t∑

s=0

P{A(s, t) − α(t − s) > x + δ(t − s)}

≤

t∑

s=0

f(x + δ(t − s)) ≤

∞∑

k=0

f(x + kδ). (14)

We have the following theorems for the leftover service

curves and backlog bounds in model B. Actually, we can

derive these results by first converting ta arrival curves to vb

ones and then applying model A theorems.

Theorem 3 (Model B’s Leftover Stochastic Service Curve):

Suppose a server S providing the ideal service curve β̂(t)
with the impairment process I . If I has a ta stochastic arrival

curve, i.e., I ∼ta< g, γ >, then the server provides the flow

the leftover stochastic service curve S ∼< g̃, β > and

β(t) = β̂(t) − γδ(t), (15)

where γδ(t) ≡ γ(t) + δt and g̃(x, δ) ≡
∑∞

k=0 g(x + kδ) by

definition.

Theorem 4 (Model B’s Backlog Bounds): If the flow A
has a ta stochastic arrival curve A ∼ta< f, α > and the

server S provides a stochastic service curve S ∼< g, β >
to the flow, then the backlog B(t) of the flow in the server

satisfies: for all t ≥ 0 and all x ≥ 0,

P{B(t) > x + sup
s≥0

[αδ(s) − β(s)]} ≤ f̃ ⊗ g(x), (16)

where αδ(t) ≡ α(t) + δt and f̃(x, δ) =
∑∞

k=0 f(x + kδ) by

definition.

Note that model B can deal with ta arrival curves while

model A can not, by introducing a δ > 0 to trade smaller

service curve for larger bounding functions.

C. Computation of Stochastic Arrival/Service Curves

We will show in this subsection how to calculate stochastic

arrival and service curves from the (σ(θ), ρ(θ))-upper con-

strained characterization [7].

Theorem 5 (Arrival Curves of (σ(θ), ρ(θ))-upper constrained):

Suppose A(t) is (σ(θ), ρ(θ))-upper constrained, then it has a

ta stochastic arrival curve A ∼ta< f, α >, where

α(t) = r · t

f(x) = eθσ(θ) · e−θx, (17)

for any r ≥ ρ(θ) and x ≥ 0. And A has a vb stochastic arrival

curve A ∼vb< f, α >, where

α(t) = r · t

f(x) =
eθσ(θ)

1 − eθ(ρ(θ)−r)
· e−θx, (18)

for any r > ρ(θ) and x ≥ 0.

Note that we have r ≥ ρ(θ) in ta and r > ρ(θ) in vb. And

Eq.(18) applies Boole’s inequality to the bounding functions

f(x) which are loose in general.

How to derive stochastic service curves? If we can model

the server S with the ideal service curve β̂ with the impairment

process I(t), we can first characterize I(t) by vb (ta) arrival

curves, and then we use Theorem 1 (Theorem 3) to get its

stochastic service curves.

The following theorem states the relation between θ-ER and

(σ(θ), ρ(θ))-upper constrained. We will use it in proving the

stability condition of backlog bounds in Section IV-B.

Theorem 6 (θ-ER vs (σ(θ), ρ(θ))-upper constrained): If

the process A(t) has a θ-envelop rate (θ-ER) ρ(θ) < ∞,

then for every ǫ > 0 there exists σǫ(θ) < ∞ so that A is

(σǫ(θ), ρ(θ) + ǫ)-upper constrained.
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D. Bounds Improvement

There are two ways of improving bounds in current litera-

ture. One way is to apply independent case analysis. The other

way is to improve the bounding functions of stochastic service

curves for time-independent arrivals.

The first way says that suppose the impairment process of

the server S is independent from the traffic arrival process,

we can derive tighter backlog bounds using independent

probability analysis.

Theorem 7 (Backlog Bounds under Independent Cases):

Suppose the server S provides the flow (satisfying

A ∼vb< f, α >) the ideal service curve β̂(t) with the

impairment process I ∼vb< g, γ > (thus S ∼< g, β > where

β(t) = ˆβ(t) − γ(t)). Suppose A and I are independent, we

have

P{B(t) > sup
s≥0

[α(s) − β(s)] + x}

≤

x∑

k=0

(ḡ(k) − ḡ(k − 1))f̄(x − k) (19)

where f̄(x) = 1−f(x), ḡ(x) = 1−g(x), and we set ḡ(−1) =
0.

This theorem of independent case analysis can be applied

to model B. However, we first need to convert the ta arrival

curves to the vb ones with new bounding functions f̂(x, δ)
and ĝ(x, δ) by Lemma 1. Then we apply the above theorem

by plugging in f̂ and ĝ.

Another way of tightening backlog bounds is to derive

tighter bounding functions of stochastic arrival and service

curves. Ciucu first proposed to use martingale to tighten the

bounds for M/M/1 and M/D/1 queues [20]. In the following

proposition, we provide a more general result following his

idea. The proof is given in Appendix-A.

Proposition 1: [vb Arrival Curves of Time-Independent

Process] Suppose A(t) is (σ(θ), ρ(θ))-upper constrained. On

condition that a(t) ≡ A(t) −A(t − 1) is independent of each

t, it has a vb stochastic arrival curve A ∼vb< f, α >, where

α(t) = r · t

f(x) = e−θx, (20)

for any r ≥ ρ(θ) + σ(θ) and x ≥ 0.

E. Discussion on Model A and B

The key difference between model A and B is: A uses vb

traffic arrival curves while B uses ta ones variant stochastic

service curves. Which one can derive tighter backlog bounds?

In general, ta arrival curves provide tighter bounding func-

tions than vb. Actually, A ∼vb< f, α > implies A ∼ta<
f, α > and the inverse is not true generally. In particular, the

bounding function of ta is tighter than that of vb (especially

when r is close to ρ(θ)) in Theorem 5. But one can not

conclude that model B is always better than model A, as it

has looser bounding functions for leftover service curves and

backlog bounds (see Theorem 3 and Theorem 4). The situation

becomes even more uncertain when consider time-independent

processes and independent A and I . Interestingly, we find that

two models can derive equivalent stochastic service curves and

backlog bounds in our studied case (Section IV-A).

III. A Node’s Stochastic Network Calculus Model

In this section, we model a node by stochastic network

calculus. In general, we can define one time slot (t = 1) to

be any small duration and measure traffic amount in any unit

(e.g. bits, bytes or packets).

Let A(t) denote the traffic arrived at the node from the

application layer. We assume A is (σA(θ1), ρA(θ1))-upper

constrained, which is a right assumption for many cases.

We model the service of a node as an ideal server curve

with an impairment process.Let the capacity of the node be

c traffic units per slot. The departure process A∗(s, t) =
β̂(s, t) − I(s, t) during any backlogged period [s, t], where

β̂(t) = c · t is the ideal service curve and I is the impairment

process. Since I(s, t) ≤ c·(t−s), there exist σI(θ2) and ρI(θ2)
so that I is (σI(θ2), ρI(θ2))-upper constrained. In here, θ1 and

θ2 are adjustable parameters.

A. Model A’s Backlog Bounds

Because A is (σA(θ1), ρA(θ1))-upper constrained, by The-

orem 5, A ∼vb< f, α > where

α(t) = rA · t

f(x) =
eθ1σA(θ1)

1 − eθ1(ρA(θ1)−rA)
· e−θ1x, (21)

for any rA > ρA(θ1).
In the same way, I ∼vb< g, γ > where

γ(t) = rI · t

g(x) =
eθ2σI (θ2)

1 − eθ2(ρI(θ2)−rI)
· e−θ2x, (22)

for any rI > ρI(θ2).
By Theorem 1, the node provides a stochastic service curve

S ∼< g, β >, where

β(t) = (c − rI) · t, (23)

for any c > rI .

Finally, by Theorem 2, we must let α(t) ≤ β(t), i.e., rA ≤
c − rI , in order to get meaningful backlog bounds which are

P{B(t) > x} ≤ f ⊗ g(x).
We note that f(x) (g(x)) is the decreasing function of rA

(rI ). Considering the above conditions, we get the following

optimal backlog bounds,

P{B(t) > x} ≤ min
θ1,θ2,rA,rI

[f ⊗ g(x)]

subject to

rA > ρA(θ1), rI > ρI(θ2)

rA + rI = c

θ1, θ2 > 0. (24)

In here, ρA(θ1) (ρI(θ2)) is the function of θ1 (θ2).
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B. Model B’s Backlog Bounds

Because A is (σA(θ1), ρA(θ1))-upper constrained, by The-

orem 5, A ∼ta< f, α >, where

α(t) = rA · t

f(x) = eθ1σA(θ1) · e−θ1x, (25)

for any rA ≥ ρA(θ1).
In the same way, I ∼ta< g, γ >, where

γ(t) = rI · t

g(x) = eθ2σI (θ2) · e−θ2x, (26)

for any rI ≥ ρI(θ2).
By Lemma 1, we have A ∼vb< f̃, αδ1

> where

αδ1
(t) = (rA + δ1) · t

f̂(x, δ1) =
eθ1σA(θ1)

1 − e−θ1δ1

· e−θ1x, (27)

for any rA ≥ ρA(θ1) and δ1 > 0. In here, we can get the close

form of f̃(x, δ) =
∑∞

k=0 f(x + kδ) for the particular f(x) in

Eq.(25).

In the same way, I ∼vb< g̃, γδ2
> where

γδ2
(t) = (rI + δ2) · t

ĝ(x, δ2) =
eθ2σI (θ2)

1 − e−θ2δ2

· e−θ2x, (28)

for any rI ≥ ρI(θ2) and δ2 > 0.

By Theorem 3, the node provides a stochastic service curve

S ∼< g̃, β >, where

β−δ2
(t) = (c − rI − δ2) · t, (29)

for any c > rI + δ2.

Finally, by Theorem 4, we must have αδ1
(t) ≤ β−δ2

(t),
i.e., rA + δ1 ≤ c− rI − δ2 in order to get meaningful backlog

bounds which are P{B(t) > x} ≤ f̃ ⊗ g̃(x). We note that

f(x) (g(x)) is the decreasing function of δ1 (δ2). Considering

the above conditions, we get the following optimal backlog

bounds,

P{B(t) > x} ≤ min
θ1,θ2,δ1,δ2,rA,rI

[f̃ ⊗ g̃(x)]

subject to

rA > ρA(θ1), rI > ρI(θ2)

rA + rI + δ1 + δ2 = c

θ1, θ2 > 0, δ1, δ2 > 0. (30)

In here, ρA(θ1) (ρI(θ2)) is the function of θ1 (θ2).

IV. Stability Condition of Backlog Bounds

We show the derivation flow in Fig. 2.

A. Equivalency Condition of Model A and B

We find that the two models actually can derive the same

stochastic service curves and backlog bounds. To understand

this, we note that the key difference is the traffic model. The

ta arrival curve vb arrival curve

Model AModel B

Stable backlog bounds

(when arrival rate < service rate )

equivalent

Fig. 2. The derivation flow of the stability condition of backlog bounds

following proposition shows that we can derive the same vb

arrival curves from the two models3.

Proposition 2 (Equivalency of ta and vb arrival curves):

If A is a (σ(θ), ρ(θ))-upper constrained process, its vb

arrival curve immediately generated by applying Theorem 5’s

Eq.(18) and the one generated by applying Theorem 5’s

Eq.(17) and then Lemma 1 are equivalent.

Proof: Following the discussions above, the vb arrival curves

generated immediately by applying Theorem 5’s Eq.(18) are

A ∼vb< f, α > where

α(t) = r · t

f(x) =
eθσ(θ)

1 − eθ(ρ(θ)−r)
· e−θx, (31)

for any r > ρ(θ).
The vb arrival curves by applying Theorem 5’s Eq.(17) and

then Lemma 1 (converted by the ta arrival curves) are A ∼vb<
f̃, αδ > where

αδ(t) = (r + δ) · t

f̂(x, δ) =
eθσ(θ)

1 − e−θδ
· e−θx, (32)

for any r ≥ ρ(θ) and δ > 0.

For the same value of (r + δ) in Eq.(32), we should

maximize δ to get tighter f̂(x, δ); in other words, we should

minimize r and let it to be ρ(θ). In this optimized case we find

that Eq.(31) and Eq.(32) are in the same form. This establishes

the equivalence between them.

Proposition 3 (Backlog bounds equivalency of two models):

Consider a single server S with an ideal service curve β̂ and

an impairment process I . Suppose the traffic arrival process

A and the impairment process I are (σ(θ), ρ(θ))-upper

constrained for some θ respectively, then the vb arrival

curves, the stochastic service curve and backlog bounds

derived by Model A and B are equivalent.

Proof: Proposition 2 can be applied to the vb arrival curves

of impairment processes of the server. Since model B can be

derived from model A (see Section II-B3), the two models can

3Ciucu and Hohlfeld got the average backlog bounds in relationship to our
proposition [21].
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derive exactly the same backlog bounds.

Note: By equivalence, we do not mean it is general for

all situations but derivation stable backlog bounds. Actually,

model B can be extended to multiple concatenated nodes while

model A can not, and they are different models. Even for the

single-node case, we only prove the equivalence property for

linear arrival curves. And it is still an open problem for more

general cases.

B. Stability Condition

One fundamental question is under what condition we

can derive stable backlog bounds (i.e., EB(t) < ∞) by

stochastic network calculus. The following proposition shows

the stability condition. We adopt model A in our proof since

the two models are equivalent in derivation backlog bounds.

Proposition 4 (Stability Condition): Suppose there exist θ-

MERs (θ-Minimum Envelop Rates) for the traffic arrival

process A and the impairment process I of the node for

0 < θ < θ̂ where θ̂ is some constant value, then stochastic

network calculus can derive stable backlogs if

aA < c − aI , (33)

where c is the transmission rate of the ideal channel, aA and

aI are the average rate of A and I defined in Definition 7,

respectively.

Proof:

The proof consists of two phases. First, we show that aA <
c − aI can lead to rA ≤ c − rI . Next, we show that if rA ≤
c−rI then stochastic network calculus can derive EB(t) which

is less than a finite value.

We adopt model A in Section III-A where A is the traffic

arrival process and I is the impairment process of the server

S since the two models are equivalent(see Proposition 3). We

have shown that P{B(t) > x} ≤ f ⊗ g(x) if rA ≤ c − rI

holds.

From Eq.(21) and (22), we let ǫ1 = rA − ρA(θ1) and ǫ2 =
rI − ρI(θ2) for θ1, θ2 > 0 and ǫ1, ǫ2 > 0. To simplify the

arguments, we let θ1 = θ2 = θ and ǫ1 = ǫ2 = ǫ.

Thus, rA ≤ c − rI holds if

ρA(θ) ≤ c − ρI(θ) − 2ǫ. (34)

From Theorem 6, we can construct the (σ(θ), ρ(θ))-upper

constrained characterization by letting ρA(θ) = ρ∗A(θ)+ ǫ and

ρI(θ) = ρ∗I(θ) + ǫ for any ǫ > 0, where ρ∗A(θ1) and ρ∗I(θ2)
are θ-MERs of A and I , respectively. And Eq.(34) holds if

ρ∗A(θ) ≤ c − ρ∗I(θ) − 4ǫ. (35)

Because ρ∗A(θ) exists, applying Taylor’s expansion,

ρ∗A(θ) = lim
t→∞

1

θt
sup
s≥0

log EeθA(s,s+t)

= lim sup
t→∞

1

θt
sup
s≥0

log E(1 + θA(s, s + t) + O(θ2A(s, s + t)2))

= lim sup
t→∞

1

θt
sup
s≥0

log (1 + θEA(s, s + t) + O(θ2A(s, s + t)2))

= lim sup
t→∞

1

θt
sup
s≥0

[θEA(s, s + t) + O(θ2A(s, s + t)2)].

Let θ go to 0,

lim
θ→0

ρ∗A(θ) = lim
t→∞

sup
s≥0

EA(s, s + t)

t
= aA. (36)

Similarly,

lim
θ→0

ρ∗I(θ) = aI . (37)

Therefore, there exists some θ < θ̂ so that ρ∗A(θ) ≤ aA + ǫ
and ρ∗I(θ) ≤ aI + ǫ. So Eq. (35) holds if

aA ≤ c − aI − 6ǫ. (38)

Since ǫ can be arbitrarily small, Eq.(38) holds if

aA < c − aI . (39)

Following the above derivations backwards, we prove that

aA < c − aI leads to rA < c − rI .

Next, we prove that stochastic network calculus can derive

EB(t) which is less than a finite value if rA < c − rI .

Since f(x) and g(x) are exponentially decreasing functions

according to Eq. (21) and Eq. (22), we can show that EB(t)
is upper-bounded by some finite constant value as follows.

Note that B(t) is a discrete value in practice (e.g., in bits or

packets).

EB(t) =
∞∑

k=0

P{B(t) = k + 1} · (k + 1)

<

∞∑

k=0

P{B(t) > k} · (k + 1)

≤

∞∑

k=0

f ⊗ g(k) · (k + 1)

≤

∞∑

k=0

(f(⌊
k

2
⌋) + g(⌈

k

2
⌉)) · (k + 1) < ∞. (40)

Remarks: Since the proof is based on the theory of stochastic

network calculus, it indicates that we can get stable backlog

bounds by stochastic network calculus on the condition that

the average arrival rate is less than the average service rate.

As this condition is very general, we think stochastic network

calculus is effective in theory.

V. Related Work

The increasing demand on transmitting multimedia and

other real time applications over the Internet has motivated

the study of quality of service guarantees. Towards it, deter-

ministic and stochastic network calculus has been recognized

by researchers as a promising step.

Essentially, the network calculus is the theory of queueing

systems that comes from the seminal work by Cruz on the

(σ, ρ) traffic characterization [2] [3] and work on the service

curve characterization of Generalized Processor Sharing (GPS)

schedulers [4] [5]. The theory has been developed by many

researchers since then. The elegance of network calculus is

due to the fundamental convolution formulas (under the min-

plus algebra) that determine the departure process of a system
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from its arrivals and its service curve. The notable strength of

the min-plus convolution is the ability to concatenate tandem

nodes along a network path, and therefore network calculus

has the ability to characterize the whole network as a single

server, which is generally intactable by traditional queueing

theory [1]. Le Boudec’s book covers deterministic network

calculus and its applications in the Internet [6]. Chang’s book

substantially presented the first approaches to stochastic net-

work calculus besides deterministic network calculus [7]. Jiang

summarized different types of stochastic arrival and service

curves in a unified framework and proposed a new stochastic

network calculus model stemmed from mb (maximal backlog

centric) arrival curves, although its application conditions have

some unsolved controversy. Jiang also wrote a book on the

theory of stochastic network calculus [8]. Ciucu proposed

an effective stochastic service curve that can be applied to

concatenated systems and calculating end-to-end delay and

backlog bounds, which exhibits a good scaling property of

O(H log H) where H is the number of nodes traversed by

a flow [19]. Ciucu also showed that his model can derive

quite accurate delay bounds in M/M/1 and M/D/1 queueing

systems by using the martingale technique [20]. More recently,

Fidler proposed a novel solution of the queue system using

expectations instead of probabilities [29], and he also made

a comprehensive survey on the recent progress of stochastic

network calculus [9]. Besides, Jiang wrote an overview on this

topic from the queueing principle perspective and he presented

a nice outlook by discussing many open challenges [10]. And

Ciucu demonstrates that the network calculus can capture

actual system behavior tightly when applied carefully, but the

unification of deterministic network calculus and stochastic

network calculus remains an open [22].

Many works have applied network calculus, for example,

in measurement-based admission control schemes [23], in

conformance testing, [24], in wireless sensor networks [25], in

Aloha systems [30], in speeding up network simulations [26]

[27], in bandwidth estimation [28] and even in manufacturing

blocking systems in management science [31].

Compared with the existing theories of stochastic network

calculus, we study the stability of backlog bounds. We focus

on two best known models: model A and B. Interestingly,

we find that the two models can derive equivalent stochastic

service curves and backlog bounds, and stable backlog bounds

can be derived as long as the average rate of traffic arrival is

less than that of service.

VI. Conclusion

In this paper, we model an network element as an ideal

server with an impairment process based on two best-known

models in stochastic network calculus, and we find that

they actually derive equivalent stochastic service curves and

backlog bounds. Finally, we prove that stable backlog bounds

can be derived by stochastic network calculus as long as

the average rate of traffic arrival is less than that of service,

suggesting the effectiveness of stochastic network calculus in

theory.
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Appendix A: Proof of Proposition 1

Proof:

For a fixed t, we construct a stochastic process X(s) =
eθ(A(t−s,t)−rs) (0 ≤ s ≤ t) and we have X(s + 1) =
X(s)eθ(A(t−s−1,t−s)−r). We will show that if a(s) ≡ A(s)−
A(s − 1) is independent for each time slot s and r ≥
ρ(θ) + σ(θ), then X(s) is supermartingale, i.e., E[X(s +
1)|X(0), ..., X(s)] ≤ X(s).

Because a(s) is time-independent, we have

E[X(s + 1)|X(0), ..., X(s)] = X(s) · E[eθ(a(t−s)−r)]

= X(s) · e−θr · Eeθa(t−s). (41)

Because A(t) is (σ(θ), ρ(θ))-upper constrained, we have

Eeθa(s) ≤ eρ(θ)+σ(θ) for all s ≥ 0. When r ≥ ρ(θ)+σ(θ) and

by Eq. (41), we have

E[X(s + 1)|X(0), ..., X(s)] ≤ X(s). (42)

Thus, X(s) is a supermartingale.

Doob’s martingale inequality says that P{sup0≤s≤t X(s) ≥

k} ≤ EX(0)
k

when X(s) is a supermartingale (note: EX(0) =
1 here) for any constant k. Let k = ex, we have

P{ sup
0≤s≤t

[(A(s, t) − r(t − s)] > x}

= P{ sup
0≤s≤t

[X(s)] ≥ ex} ≤ e−x. (43)


